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Abstract We investigate numerically a phenomenological mathematical model of
unimolecular reactions proceeding on inhomogeneous planar surfaces in the two-
dimensional space case taking into account: the bulk diffusion of the reactant from
the bounded vessel toward the adsorbent and the product bulk one from the adsorbent
into the same vessel, the adsorption and desorption of reactant particles, long-range
surface diffusion of the adsorbate, and a slow product desorption from the adsorbent.
Simulations were performed using the finite difference technique. The influence of the
long-range surface diffusion and product desorption rate on the kinetics of processes
catalysed by inhomogeneous surfaces with different arrangements of reactive and
nonreactive adsorption sites are studied.

Keywords Heterogeneous reactions · Adsorption · Desorption · Surface diffusion

1 Introduction

In a heterogeneous catalytic process, molecules of reactants diffuse from a volume to
the surface of the catalyst, adsorb onto the surface, diffuse on it, and react to form a
product that diffuses into a volume. Diffusion of adsorbed particles on solid surfaces
occurs in a number of modern technologies [1,2]. To describe the surface diffusion
of the adsorbate, usually a discrete arrangement of the surface adsorption sites is
considered, and the Monte Carlo technique based on jumps of adsorbed particles
to nearest-neighbor vacant sites or phenomenological (mean-field) models based on
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Fick’s diffusion law are used (see, e.g., [3–13]). However, models involving Fick’s
law are indirectly based on the particle jumps to nearest-neighbor vacant sites and
cannot describe the long-range diffusion of adsorbed particles. In the case where the
energy exchange between adsorbed particles and substrate is slow and corrugation
of the adsorption potential is weak or the temperature is sufficiently high, the long-
range jumps may be significant [14–16]. Experiments [16–19] also showed that long-
range jumps of adsorbed particles may play a dominant role. The influence of long-
range jumps on the diffusion coefficient was studied in [1,8,20–22] by using the
Langevin equation. The influence of long-range jumps on the catalytic reactivity of
spatially inhomogeneous surfaces was studied in [23] by using a phenomenological
surface diffusion model based on the integral diffusion mechanism. In all these papers,
the product desorption is considered as a rapid phenomenon, and the assumption of
immediate desorption is used. Generally, product particles before their desorption can
stay or diffuse on the surface and poison the catalyst [12]. In [9], three models of
unimolecular surface reactions are studied taking into account the surface diffusion
of the adsorbate, product surface diffusion before its desorption from the surface, or
both. In these models, the surface diffusion is based on Fick’s law, and the product
desorption is considered as a slow phenomenon. The adsorbate surface diffusion role
on poisoning of catalytic sites of uniform surfaces in monomer–dimer reactions is
studied in [6,7] by using models based on Fick’s law. The influence of photocatalytic
processes on the product desorption rate is studied in [24].

The goal of this paper is a qualitative study of the influence of product desorp-
tion rate on the catalytic reactivity of spatially inhomogeneous surfaces. To study this
influence, we involve the slow product desorption from the surfaces into the phenom-
enological unimolecular surface reactions model [23], which describes the surface
reactions coupled with the reactant and product bulk diffusion and the long-range dif-
fusion of adsorbed particles on spatially inhomogeneous planar surfaces. We also use
generalized transition (jump) functions of the escaped particles that take into account
their energy loss due to interaction with the other escaped ones and with the vacant sites
of the substrate. As in [12,23], spatially inhomogeneous surfaces involve a nonuni-
form homogeneous and heterogeneous arrangements of reactive and nonreactive sites.
In the case of heterogeneous arrangement, the nonuniform homogeneous reactive and
nonreactive sites are distributed in domains alternatively. Adsorption, desorption, and
diffusion are allowed to proceed at each site, while reaction on reactive ones allows
all processes to proceed only at a constant temperature. The product surface diffusion
before its desorption is neglected.

The paper is organized as follows. In Sect. 2, we present the model. In Sect. 3, we
discuss the numerical results. In Sect. 4, we conclude the paper by a summary of main
results.

2 The model

As in [23], we assume that reactant A and product B of concentrations a(t, x) and
b(t, x) occupy a bounded domain � with surface S = S1 ∪ S2. Here t is time,
x ∈ � is a position, S2 is a surface of the adsorbent, and S1 = S \ S2 is a surface
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impermeable to the reactant and product. Contrary to the Monte Carlo technique asso-
ciated with a discrete distribution of adsorption sites, we apply the Langmuir approach
and, assuming that adsorption sites are distributed continuously or piecewise contin-
uously, describe their distribution by densities. Let s2(x) and s1(x), x ∈ S2, be the
surface density of active and inactive sites in the surface reaction, respectively. Assume
that s2θ2 and s1θ1, θi (t, x) ∈ [0, 1], i = 1, 2, are the densities of active and inactive
sites occupied by the reactant molecules. Also, assume that s2θ3 is the density of active
sites occupied by the product molecules. Let Pi j (t, x, y) be the rate at moment t at
which the reactant particle adsorbed on a site of type j located in position y ∈ S2,
after its escape from this position, diffuses (jumps) to a vacant site of type i located in
position x ∈ S2. Assume that k is a reaction rate constant, kr is the product desorption
rate constant, and k f 1, k f 2, kr1, kr2 are the reactant adsorption and desorption rate
constants. Denoting by κa and κb the diffusivities of reactant A and product B and
using the Langmuir mechanism of unimolecular reactions and the law of mass action,
we derive the following coupled system for surface coverages θ1, θ2, and θ3:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ1

∂t
= (1 − θ1)

{
k f 1a + ∫

S2

(
θ1(t, y)s1(y)P11(t, x, y)

+θ2(t, y)s2(y)P12(t, x, y)
)

dy
}

−θ1

{
kr1 + ∫

S2

(
(1 − θ1(t, y))s1(y)P11(t, y, x)

+(1 − θ2(t, y) − θ3(t, y))s2(y)P21(t, y, x)
)

dy
}
, x ∈ S2, t > 0,

θ1|t=0 = 0, x ∈ S2,
∂θ2

∂t
= (1 − θ2 − θ3)

{
k f 2a + ∫

S2

(
s1(y)θ1(t, y)P21(t, x, y)

+s2(y)θ2(t, y)P22(t, x, y)
)

dy
}

−θ2

{
kr2 + k + ∫

S2

(
(1 − θ1(t, y))s1(y)P12(t, y, x)

+(1 − θ2(t, y) − θ3(t, y))s2(y)P22(t, y, x)
)

dy
}
, x ∈ S2, t > 0,

θ2|t=0 = 0, x ∈ S2,
∂θ3

∂t
= kθ2 − krθ3, x ∈ S2, t > 0,

θ3|t=0 = 0, x ∈ S2.

(1)

Here a = a(t, x) is the unknown reactant concentration at point x ∈ S2 at the moment
t . The gain term

(1 − θ1(t, x))

⎧
⎪⎨

⎪⎩

∫

S2

(
θ1(t, y)s1(y)P11(t, x, y) + θ2(t, y)s2(y)P12(t, x, y)

)
dy

⎫
⎪⎬

⎪⎭

on the right-hand side of the first equation of this system is conditioned by the surface
diffusion (jumps) of the adsorbed reactant particles from the inactive and active sites
located on surface S2 to the vacant inactive sites located in the position x ∈ S2. The
loss term
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θ1(t, x)

⎧
⎪⎨

⎪⎩

∫

S2

(
(1 − θ1(t, y))s1(y)P11(t, y, x)

+ (1 − θ2(t, y) − θ3(t, y))s2(y)P21(t, y, x)
)

dy

⎫
⎪⎬

⎪⎭

of the first equation is conditioned by the surface diffusion (jumps) of the adsorbed
reactant particles from the inactive sites located in position x ∈ S2 to vacant inactive
and active sites located on S2. The rise of the integral gain and loss terms of the second
equation of this system can be explained similarly. To close this system, we add the
following equations describing the bulk diffusion of reactant A and product B:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂a

∂t
= κa�a, x ∈ �, t > 0,

∂na|S1 = 0, t > 0,

κa∂na|S2 = −k f 1s1(1 − θ1)a|S2 + kr1s1θ1
−k f 2s2(1 − θ2 − θ3)a|S2 + kr2s2θ2, t > 0,

a|t=0 = a0(x), x ∈ �,

(2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂b

∂t
= κb�b, x ∈ �, t > 0,

∂nb|S1 = 0, t > 0,

κb∂nb|S2 = ks2θ3, t > 0,

b|t=0 = 0, x ∈ �.

(3)

Here � is the Laplace operator, ∂na and ∂nb are the outward normal derivatives, and
a0 is the initial distribution of the reactant concentration.

It is easy to prove that system (1)–(3) possesses the mass conservation law
∫

�

(a + b) dx +
∫

S2

(s1θ1 + s2θ2 + s2θ3) dx =
∫

�

a0 dx, t ≥ 0. (4)

We determine the specific catalyst conversion rate of the reactant molecules into
the product (turnover rate) by the formula

z(t) = k
∫

S2

s2(x)θ2(t, x) dx

/∫

S2

s2(x) dx. (5)

In the case where Pi j (t, x, y) = κi j (t, x, y)δ(x − y) with the Dirac delta function
δ, Eq. (1) reduce, for every interior point of S2, to the system of ODEs

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ ′
1 = (1 − θ1)

{
k f 1a + s2κ12(t, x, x)θ2

}

−θ1
{
kr1 + s2(1 − θ2 − θ3)κ21(t, x, x)

}
, θ1|t=0 = 0,

θ ′
2 = (1 − θ2 − θ3)

{
k f 2a + s1κ21(t, x, x)θ1

}

−θ2
{
kr2 + k + s1(1 − θ1)κ12(t, x, x)

}
, θ2|t=0 = 0,

θ ′
3 = kθ2 − krθ3, θ3|t=0,

(6)
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where prime denotes the time derivative. We emphasize that x involved in these equa-
tions is a parameter. Equation (6) show that, in the limit as αi j → 0, the parameters
κ11 and κ22 do not influence the evolution of θ1 and θ2. In the steady-state case, from
Eq. (6) we get θ3 = (k/kr )θ2 and the following system of algebraic equations for the
steady-state values of θ1 and θ2:

⎧
⎪⎪⎨

⎪⎪⎩

(1 − θ1)
{
k f 1a + s2κ12(x, x)θ2

}

−θ1
{
kr1 + s2(1 − θ2(1 + k/kr ))κ21(x, x)

} = 0,

(1 − θ2(1 + k/kr ))
{
k f 2a + s1κ21(x, x)θ1

}

−θ2
{
kr2 + k + s1(1 − θ1)κ12(x, x)

} = 0

(7)

with κi j independent of t . In the case where q := κ12 −κ21(1+k/kr ) = 0, this system
consists of two linear equations. If q �= 0, system (7) can be reduced to a quadratic
equation for θ1 or θ2 and solved analytically.

3 Numerical results

We study system (1)–(3) in a domain � = {(x1, x2, x3) : xi ∈ [0, l], i = 1, 2, 3}
with boundary S = S1 ∪ S2, where S2 = {(x1, x2, x3) : xi ∈ [0, l], i = 1, 3, x2 = 0}
and S1 = S \ S2. To simplify the problem, we restrict ourselves to the case where the
densities s1 and s2 depend only on variable x1 and the initial distribution a0 is a constant.
We take into account jumps of adsorbed particles only in the x1 direction. In this case,
the double integrals involved in Eq. (1) reduce to integrals over [0, l] multiplied by l.
This allows us to consider Eqs. (2) and (3) in �̃ = {(x1, x2) : xi ∈ [0, l], i = 1, 2}
with S̃2 = {(x1, x2) : x1 ∈ [0, l], x2 = 0}.

The crucial step in the implementation of the present model is the construction of the
transition (jump) functions Pi j (t, x, y), i, j = 1, 2, which depend on the geometrical
arrangement of the active and nonactive in reaction adsorption sites, local arrangement
of the occupied sites, energy exchange between the particle escaped from its adsorption
site and substrate (adsorbent), and energy loss due to interaction between the escaped
particle and the other escaped ones. The continuous or piecewise-continuous distri-
bution of the adsorption sites makes the problem of the construction of Pi j (t, x, y)

too complicated to be solved in detail. Therefore, we restrict ourselves to constructing
a model function Pi j (t, x, y) that, as we hope, involves arguments mentioned above
indirectly. To this end, we formulate the following hypotheses:

1. The escaped particles are attracted only by vacant adsorption sites (occupied sites
do not attract escaped particles).

2. The probability for the escaped particle to be adsorbed on the interval [ξk , ξk+�ξk]
is proportional to the number of the vacant adsorption sites inside the interval, i.e.,

γi j
[
s1(ξk)

(
1 − θ1(t, ξk)

) + s2(ξk)
(
1 − θ2(t, ξk) − θ3(t, ξk)

)]
�ξk, γi j = const.

3. The energy loss of the escaped particle due to interaction with the other escaped
ones is an increasing function of their number, which increases as the number of
the occupied sites grows.
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4. The diffusion rate of the escaped particle is a decreasing function of its energy loss
due to interaction with the other ones.

5. Attractive forces of vacant adsorption sites acting on the escaped particle decrease
as the distance between them increases.

Hence, the diffusion rate of the escaped particle moving from point y to x is a
decreasing function of |x − y|. From the second hypothesis it follows that the proba-
bility for the particle escaped from point y to be not adsorbed on the interval [y, x] is
proportional to exp{−γi j |I2(t, x, y)|}, where

I2(t, x, y) =
x∫

y

[
s1(ξ)

(
1 − θ1(t, ξ)

) + s2(ξ)
(
1 − θ2(t, ξ) − θ3(t, ξ)

)]
dξ.

For numerical calculations, we use the model function

Pi j (t, x, y) = κi j (x, y)

√
I1(t, x, y)

παi j
exp

{

−|x − y|2 I1(t, x, y)

αi j
− γi j |I2(t, x, y)|

}

(8)

with

I1(t, x, y) = 1 + βi j

∣
∣
∣
∣
∣
∣

x∫

y

(
s1(ξ)θ1(t, ξ) + s2(ξ)(θ2(t, ξ) + θ3(t, ξ))

)
dξ

∣
∣
∣
∣
∣
∣
,

where βi j = const , and αi j/2, i, j = 1, 2, are the dispersions of jump lengths of
adsorbed particles in the case where βi j = γi j = 0, κi j are their surface diffusion
rate constants, and |x − y| with x, y ∈ [0, l] is the jump length from point y to x . The
multiplier

√
I1(t, x, y)

παi j
exp

{

−|x − y|2 I1(t, x, y)

αi j

}

is conditioned by hypotheses 3, 4, and 5. It is evident that

lim
αi j →0

1√
παi j

exp

{

−|x − y|2
αi j

}

= δ(x − y).

Using the dimensionless variables t̄ = t/T, x̄1 = x1/ l, x̄2 = x2/ l, x̄3 = x3/ l,
ā = a/a∗, b̄ = b/a∗, s̄1 = s1/(la∗), s̄2 = s2/(la∗), k̄ f 1 = k f 1T a∗, k̄ f 2 =
k f 2T a∗, k̄r1 = kr1T, k̄r2 = kr2T, k̄ = kT, k̄r = kr T, κ̄a = κaT/ l2, κ̄b =
κbT/ l2, κ̄i j = κi j T l2a∗, ᾱi j = αi j/ l2, γi j = lγ̄i j , βi j = lβ̄i j where T, l, and
a∗ are characteristic dimensional units, we rewrite Eqs. (1)–(8) in the same form, but
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in dimensionless variables. The dimensionless Eqs. (1), (4), and (5) involve integra-
tion over the interval [0, 1]. For simplicity, in what follows, we omit the bar and treat
Eqs. (1)–(8) as dimensionless. To solve numerically problem (1) with given a(t, x1, 0),
we use Euler’s scheme with integrals approximated by trapezoidal quadrature formula.
To test results obtained by Euler’s scheme, we also solved these equations by applying
the Runge–Kutta scheme and obtained the same result. To solve problem (1)–(3), we
used the implicit finite-difference scheme based on the alternating direction method
[25]. As in [23] and [9], for all calculations, we used the following dimensional data:

T = 1 s, l = 10−1 cm, a∗ = 10−11 mol cm−3,

s∗ = la∗ = 10−12 mol cm−3, k f 1, k f 2 ∈ [109, 1011] cm3 mol−1 s−1,

kr1, kr2, k ∈ [3 · 10−3, 1] s−1, κa, κb ∈ [5 · 10−7, 10−3] cm2 s−1. (9)

All figures are drawn for k f 1 = k f 2 = 0.01661, kr1 = kr2 = 0.001, and k = 0.03.
The standard value of κi j is 1. If the values of κi j differ from the standard one, then
they are given in captures of figures. In what follows, by varying the parameters
kr , αi j , κi j , βi j , and γi j we study the product desorption rate and long-range sur-
face diffusion influence on the kinetics of catalytic process of surfaces with different
arrangements of the active and inactive in reaction adsorption sites. We first discuss the
case of surface diffusion where the bulk diffusion of the reactant is neglected and the
reactant concentration a(t, x1, 0) for t ≥ 0 and x1 ∈ [0, 1] is given. Then we analyze
the numerical solution of system (1)–(3). In all calculations, we consider three cases
of the distribution of active and inactive sites:

Case I. s1 = x1, s2 = 1 − x1 for x1 ∈ [0, 1].
Case II.

s1 =
{

0 if x1 ∈ (0, 1/2),

1 if x1 ∈ [1/2, 1],

s2 =
{

1 if x1 ∈ [0, 1/2],
0 if x1 ∈ (1/2, 1].

Case III.

s1 =
{

0 if x1 ∈ (0, 1/8) ∪ (2/8, 3/8) ∪ (4/8, 5/8) ∪ (6/8, 7/8),

1 if x1 ∈ [1/8, 2/8] ∪ [3/8, 4/8] ∪ [5/8, 6/8] ∪ [7/8, 1],

s2 =
{

1 if x1 ∈ [0, 1/8] ∪ [2/8, 3/8] ∪ [4/8, 5/8] ∪ [6/8, 7/8],
0 if x1 ∈ (1/8, 2/8) ∪ (3/8, 4/8) ∪ (5/8, 6/8) ∪ (7/8, 1].

The densities s1 and s2 of all three arrangements of adsorption sites satisfy the
condition

∫ 1
0 s1(x) dx = ∫ 1

0 s2(x) dx = 1/2. Case I corresponds to the nonuniform
homogeneous distribution of adsorption sites, while the other two cases describe a
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Fig. 1 a Influence of the product desorption rate constant kr on the turnover rate z(t) determined by Eqs. (1)
(solid line) and (6) (dashed line) with densities s1(x1) = x1 and s2(x1) = 1 − x1. b Influence of of the
product desorption rate constant kr and arrangement of adsorption sites on the function z(t) determined by
Eq. (1). Case I—solid line, case II—dashed line, case III—bullets. α = 0.02 and density a(t, x1, 0) = 1 in
both cases (a) and (b)

heterogeneous (piecewise homogeneous) arrangement of sites. In the case where all
αi j , κi j , βi j , and γi j are equal for all i, j , we use the notations α = αi j , κ = κi j , β =
βi j , and γ = γi j .

3.1 Numerical results of system (1) with a(t, x1, 0) = 1

The numerical results are illustrated by Figs. 1, 2 and 3 in the case where βi j = γi j =
0 and depict dynamics of the turnover rate z for homogeneous and heterogeneous
arrangements of sites. The results of the general case are illustrated by Fig. 4.

Figure 1a depicts the comparison of limit values of z as α → 0 and values of z deter-
mined for α = 0.02 and demonstrates the increase of z as product desorption rate con-
stant kr increases from 0.001 till ∞. This figure also demonstrates the nonmonotonic
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Fig. 2 Effect of parameters αi j , i, j = 1, 2, on the turnover rate z(t) determined by Eq. (1) with densities
a(t, x1, 0) = 1, s1(x1) = x1, and s2(x1) = 1 − x1. a kr = 0.001, b kr = 0.01

or monotonic behavior of z in time for small or large values of kr , respectively. This
result can be explained by the nonmonotonic behavior of θ2. Indeed, calculations show
that, for small kr , θ2(t, x1) grows as t increases, attains a maximum value depending
on x1, and then decreases to a positive steady-state function of x1. However, in the
case of large kr , θ2 grows as t increases, while θ3 is a monotonic function of t for all
kr . Now from formula (5) the nonmonotonic or monotonic behavior of z(t) follows.

Figure 1b demonstrates the comparison of values of z that correspond to arrange-
ments I, II, and III of adsorption sites for α = 0.02 and different values of kr . For
small values of kr (kr = 0.001) and large t , all three distributions of adsorption sites
determine approximately the same values of z (see curves 1), but, for kr ≥ 0.01, the
influence of different arrangements of adsorption sites on the behavior of z is appre-
ciable. The largest values of z correspond to arrangement III. Curves 5 correspond
to instantaneous product desorption. Calculations show that, for large values of α

(α = 0.1), the influence of arrangements I, II, and III on the behavior of z is small.
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Fig. 3 Effect of parameter kr and arrangement of adsorption sites on the turnover rate z(t) determined by
Eq. (1) with density a(t, x1, 0) = 1: a α11 = α21 = α22 = 0.1, α12 = 0.01; b α11 = α21 = α22 =
0.02, α12 = 0.01. Nonuniform homogeneous distribution of sites (s1(x1) = x1, s2(x1) = 1 − x1)—solid
line, heterogeneous distribution of sites: case II—dashed line, case III—short dashed line

Figure 2 depicts the influence of the parameters α12, α21, and α22 on the dynamics
of z for kr = 0.001 (Fig. 2a) or kr = 0.01 (Fig. 2b) and, because of the smallness of
kr , demonstrate the nonmonotonic behavior of z in time. Both figures present a small
influence of α22 and essential influence of parameters α21 and α12. From Fig. 2a we
observe that, for t < t∗, t∗ ≈ 100 s, z increases as α12 decreases or α21 increases but,
for t > t∗, z behaves vice-versa. Figure 2b demonstrates the increase of z for all t > 0
as α12 decreases or α21 increases. From Fig. 2a, b we also observe that, as t grows,
z tends to asymptotic values that, for small kr (kr = 0.001), practically do not depend
on αi j .

Figure 3a, b together demonstrate the cooperative influence of parameters α̃ :=
α11 = α21 = α22 and kr and arrangements I, II, and III of the adsorption sites on the
dynamics of z for α12 = 0.01. Numerical experiments show that, in the case where
α̃ � 0.025, the largest maximal values of z for small kr and all values of z for large kr
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Fig. 4 Dependence of coverage θ2(t) and function z(t) determined by Eq. (1) with densities a0(x1, x2) = 1
and s1(x1) = x1, s2(x1) = 1 − x1 on the parameters β and γ in the case α = 0.1

correspond to arrangement III of adsorption sites. But, in the case where α̃ > 0.025,
the maximal values of z for small kr and all values of z for large kr correspond to
arrangement II. This can be explained by different numbers of adsorbed particles that
because of jumps leave and arrive at active sites of arrangements II and III in the cases
of small and large values of α̃. Calculations show that the values of z determined by
arrangements I and III for large kr (kr ≈ 0.1) are approximately equal.

The influence of βi j and γi j on the behavior of z and θ2 is depicted in Fig. 4 for the
homogeneous arrangement of adsorption sites. The curves corresponding to positive
and zero values of βi j and γi j demonstrate a similar qualitative behavior of turnover
rate z and coverage θ2. This figure also demonstrates the decrease of z as βi j and
γi j increase, but the influence of γi j is more significant. Moreover, the difference
z(t, βi j , γi j )− z(t, 0, 0) is small for small values of βi j and γi j . We also used function
(8) with I1(t, x, y) replaced by I1(t, 1, 0) and get that the qualitative behavior of z
in both cases is similar, but the values of z that correspond to modified formula (8)
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0 100 200 300 400 500
0,000

0,002

0,004

0,006

0,008

0,010
α

11
=α

12
=α

21
=α

22
=0.1

 α
11

=α
21

=α
22

=0.1, α
12

=0.01

α
11

=α
12

=α
22

=0.1, α
21

=0.01

1 k
r
=0.001

2 k
r
=0.01

3 k
r
=1

2

3

3

2

z

t

1

Fig. 6 Influence of parameters kr , α12 and α21 on the turnover rate z(t) determined by Eqs. (1)–(3) with
densities a0(x1, x2) = 1 and s1(x1) = x1, s2(x1) = 1 − x1

are smaller than those determined by the previous version of formula (8). This is not
surprising because the modified function determines a smaller dispersion.

3.2 Numerical results of system (1)–(3)

The results are depicted in Figs. 5, 6, 7 and 8 only for βi j = γi j = 0. For all values
of kr , the figures show the nonmonotonic behavior of z in time, which is conditioned
by the cooperation of the decrease of reactant concentration a(t, x1, 0) and poisoning
effect of kr . Note that the instantaneous product desorption and decrease of the reactant
concentration also determines a nonmonotonic behavior of z in time (see [9]). Figure
5 presents the dependence of z on parameters κ12 = κ22 and kr . For small t and all
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Fig. 7 Effect of the parameters kr , α12 and arrangement of adsorption sites on the function z(t) determined
by Eqs. (1)–(3) for nonuniform homogeneous distribution of sites (case I, solid line) and for heterogeneous
distribution of sites (cases II, dashed line, and III, bullets): a α11 = α21 = α22 = 0.1, α12 = 0.01;
b α11 = α21 = α22 = 0.02, α12 = 0.01

values of kr we used, the decrease of parameter κ12 = κ22 increases z, but, for large
t , its influence is vice-versa. The growth of kr increases the maximal values of z, but,
for large t , because of the rapid decrease of the reactant concentration, its influence
on the behavior of z is opposite.

Figure 6 presents the influence of parameters kr , α12, and α21 on the behavior of
z. For each value of kr , we demonstrate three curves that correspond to fixed values
of parameters α̃, α12, and α21. For small t , the decrease of α12 or increase of α21
increases z, but, for large t , their influence is opposite. This effect can be explained
by the fast decrease of the reactant concentration.

In Fig. 7, the comparison of the values of z that correspond to different arrangements
of adsorption sites is demonstrated for α12 = 0.01, kr = 0.001, 0.01, 0.1, 1, α̃ = 0.1
(Fig. 7a), and α̃ = 0.02 (Fig. 7b). Both figures depict the different influences of the
different arrangements of adsorption sites on the behavior of z. Numerical experiments
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Fig. 8 Dependence of the total amount of the product Ib on kr and parameters: a α12 and α21; b κ12 = κ22
in the case where a0(x1, x2) = 1 and s1(x1) = x1, s2(x1) = 1 − x1

show that the largest maximal values of z correspond to arrangement III of adsorption
sites if α̃ � 0.025 and to type II if α̃ > 0.025. For large kr and large t , this behavior
is opposite.

Figure 8 depicts the influence of the parameters kr , α12, and α21 (Fig. 8a) and
parameters kr and κ12 = κ22 (Fig. 8b) on the dynamics of the total amount of the
product Ib = ∫ 1

0

∫ 1
0 b(t, x1, x2) dx1 dx2. We observe that the decrease of κ12 = κ22 or

α12 and increase of kr or α21 increase Ib.

4 Conclusions

To conclude, we summarize the main results. In this paper, we have presented
simulations of a phenomenological mathematical model of unimolecular reactions
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proceeding on inhomogeneous (nonuniform homogeneous and heterogeneous) planar
surfaces in the two-dimensional space, taking into account the following: the bulk dif-
fusion of the reactant from the bounded vessel toward the adsorbent and the product
bulk one from the adsorbent into the same vessel, different arrangements of active and
inactive in reaction adsorption sites, the adsorption and desorption of reactant parti-
cles, long-range surface diffusion of the adsorbate, and the slow product desorption
from the adsorbent.

The present model generalizes that given in [23] by including the slow product
desorption and using more complicated transition functions Pi j (t, x, y) of escaped
particles. The main characteristic we have studied is the reactivity of the surfaces.

In the case of Pi j (t, x, y) with βi j = γi j = 0:

(a) we have investigated theoretically the role of dispersions of jump lengths of
escaped particles and both the surface diffusion and product desorption rate con-
stants, κi j and kr , on the reactivity of inhomogeneous surfaces;

(b) we have shown that dispersions of jump lengths of escaped particles and the
arrangement of adsorption sites strongly influence catalytic activity of the system
resulting in different turnover rate values of different arrangements of adsorption
sites at different values of dispersions of jumps lengths and product desorption
rate constant kr . For large values of dispersion α, this difference is small. But
if α12 is small or α21 is large and the other equal dispersions of jumps lengths
are small or large, then this difference is large. Moreover, there exist different
domains of parameters for which the largest maximal values of z correspond to
arrangement II or III of adsorption sites. In all cases, the decrease of the product
desorption rate constant kr decreases the values of z;

(c) we have demonstrated that the nonmonotonic behavior of z is conditioned by
the cooperative effect of the product desorption rate and decrease of the reactant
concentration in the case of model (1)–(3) and by a poisoning effect of small
values of the product desorption rate constant in the case of system (1) with
a(t, x1, 0) = 1.

We also have shown that z that correspond to zero or positive values of βi j and γi j

behave similarly.
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